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The steady mixed problem of the motion of a transversely isotropic elastic circular cylinder, compressed by a finite elastic shell, 
is solved by the method of piecewise-homogeneous solutions [l]. One of the relations of generalized orthogonality obtained for 
homogeneous solutions is used. ‘Ike special cases are considered: (1) a semi-infinite shell is placed on a movable cylinder with 
a specified negative allowance the edge of the shell is stress-free, and there is no preloading, and (2) a concentrated encircling 
load acts on the shell. The solution of the problem of a semi-infinite shell and the system of piecewise-homogeneous solutions 
are constructed in quadratures by the Wiener-Hopf method. (A similar problem was investigated in [2] in a static formulation. 
Steady mixed contact problems were investigated previously in (3-101.) 0 2003 Elsevier Science Ltd. All rights reserved. 

1. THE ORTHOGONALITY OF HOMOGENEOUS SOLUTIONS 

The orthogonal@ relations for homogeneous solutions [lo] enabled the method of piecewise- 
homogeneous solutions to be applied to dynamic problems of the theory of elasticity on the steady 
motions with different velocities of contacting infinite orthotropic cylinders and layers. A generalized 
orthogonal@ relation was derived for solving the axisymmetric problem of the steady motion of a 
transversely isotropic elastic circular cylinder with respect to a fixed thin circular cylindrical shell by 
the method of piecewise-homogeneous solutions. 

In a cylindrical system of coordinates Or& in the case of two circular transversely isotropic cylinders 
O~r~R,,-n<Clan,~ <z,c+~andR,~r~R2,-n:c8~~,~ cz2< +w,movingwith 
respect to this system with velocities w1 and w2, z1 = z-w& z2 = Z-w2t, where t is the time, the 
orthogonality relation [lo] takes the form 

m,un)]rdr=O, mf-n (1.1) 

In view of the axial symmetry, the displacement vector urn has only two non-zero components u,” and 
4 m - the radial and axial displacements, and the components of the vector M” = {My, My} have the 
form 

c2 sum 
M,=‘=p----+ 

~22 ar 
“,, (1.2) 

Here c:, 0,” are the shear and normal stresses, the superscript m indicates the fact that the components 
of the homogeneous solution considered are determined by the mth root pm (m = + 1, 22, . . .) of the 
dispersion equation,p, = -pm, c: = (h + 2p)/p and c: = ~/L/P, cl, c2 are the velocities of the compression 
and shear waves, h and p are the Lam6 coefficients, p are the densities, c are the velocities, which, for 
the first and second cylinders, have the values hl, pl, pl, w1 and h2, ~2, p2, w2 respectively, and (,) is the 
scalar product. 

By reducing the radius R2 we can change the thickness of a hollow cylinder to a small value h, and 
take the radius R = RI + h/2 as the shell thickness. We will represent the second integral in (1.1) in 
the form 
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R2 

j [(u”,M”)-(Mm,u”)]rdr= I,,, -I,, 
RI 

R+h12 

I, = j (u:M;” - Mru:)rdr 
R-hi2 

(1.3) 

According to expressions (1.2), taking into account the fact that the displacements u, and u, in 
axisymmetric problems depend only on the z coordinate, i.e. they are assumed to be constant over the 
shell thickness, we have 

where M” and Z”” are the moment and shearing force. Substituting expression (1.4) into formula (1.3) 
and then substituting the expression obtained into (l.l), yield the generalized orthogonality relation 
with the load 

R(ufP” -P”u:)+ 

2 

+ 1-q u,“M”-Mmu~)-~ ( 1 Cl 
$t UrU: -U~u~)=O, mf-n 

Hence, repeating the transformations of the orthogonality relations (lo), based on changing to 
homogeneous solutions, the components of which are mirror images in the z = 0 plane, we obtain 

RI 
j (u,“Mf - MTu:)rdr+ I,, = 0, m2 # n2 WI 
0 

The quantities ur, u, and h are small compared with the other quantities, and hence relation (1.5) 
can be simplified by neglecting in it the expression containing the product of these quantities. In a 
cylindrical system of coordinates, connected with the fixed shell (w2 = 0), relation (1.5) takes the form 

7 (urM;-MTu:)rdr+RurP”-M”u:=O, m21tn2 
0 

(1.6) 

2. FORMULATION AND SOLUTION OF THE IN HOMOGENEOUS 
PROBLEM OF A SEMI-INFINITE SHELL 

In a cylindrical system of coordinates Or&, we will consider the problem of the contact between a fixed 
semi-infinite circular shell r = R, -7~ < 8 G n, z 3 0 of constant small thickness h with an elastic cylinder 
OsrSl,-xc6 s 7c, -02 c 21 < +m, moving with constant sub-Rayleigh velocity c, z1 = z - ct. A 
load g(z), acting on the shell, a bending moment Pi and a shearing force P2, applied to its edge, and 
also the loadf(z) on the free part of the cylinder are axisymmetrical. There is no friction between the 
shell and the cylinder. 

The boundary conditions for the elastic cylinder for r = 1 have the form 

Tn =o, -00<z<+m (2-l) 

0, = f(z), z co; q(z)=% +y(R-I-;), z>O (2.2) 

anu P 
l=-A, ~~0, n=2,3 azn D (2.3) 
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where 

Nz) 

and D and Ea are the bending stiffness and the modulus of elasticity of the shell. 
The solution of the problem will be sought using Lame potentials, which, in the axisymmetric case 

in a moving system of coordinates Olrlt3,zI, rl = r, Cl1 = 8, z1 = z - ct, satisfy the equations 

The components of the displacement vector u1 and the stress tensor are given by the well-known 
formulae [ 1 l] 

where h and u are the Lame coefficients. 
Since the solutions are time-independent 

Suppose 

(2.5) 

P-6) 

(2.7) 

It then follows from relations (2.6) and (2.7) that 

aul(z,,q,t) = au,(z.d) az auw 
at az dr=x--- 

Similarly 

au,(z,,q,f) = au(z,r), au,(2,4d = auks 
aq ar atI az 

(2.8) 

(2.9) 

In the system of coordinates OrBz, connected with the shell, relations (2.5) retain their form, by virtue 
of Eqs (2.9) while for Eqs (2.4) putting 

Q(z,r)=$l(z, +ct,r,,O), y(z,r)=wl(zl +ct,q,O) 

by Eqs (2.8) we have 

v +&y=O a2+ ; l*+a2a’o=o 

ar2 
a2w : law 

r ar az2 * ar2 r ar r2 at2 
a2 =l-c’lc;, b2 =l-c2/c; 

or in terms of Laplace transforms 

@(p, r) = +j $(z, r)e+dz, 
-0 

VP, r) = j w(z. r)e+dz 
-00 

a20 i & 
-+;r+a2p2Q=0, 

a2\y 1 ay 
Jr2 

-+;dr+(b2p2 -‘)Y’=O 
ar2 r2 

(2.10) 

(2.11) 



808 V. K. Lashchenov 

Taking into account the fact that the required solutions are bounded on the axis of the cylinder, we 
will take the solutions of Eqs (2.11) in the form of Bessel functions of the first kind of the zeroth and 
first order, respectively 

where A(p) and B(p) are functions determined by the boundary conditions of the problem. 
By inverting formulae (2.10) we obtain from relations (2.5) 

u,(z, r) = (2.12) 

uz (z, r) =&L [~(p,r)+~+Y’(p,r)leP’dp 

Here and henceforth the prime denotes differentiation with respect to r, and L denotes the straight 
line Rep = E. 

Substituting the expression 

7, (z, f-1 = 

(a consequence of Hooke’s law and formulae (2.12)) into boundary conditions (2.1) we obtain, apart 
from an arbitrary factor C(p) 

A(p) = -Ml + b2 V, @p), B(p) = ‘NJ, (ap) 

Formulae (2.12) take the form 

u,(z, r) =&j C(p)Cil(p,r)ePzdp, ui(z,r)=$J C(PW2(P7rkPz4 
L L 

(2.13) 

U2(p. r) = ~[2abJo(bpr)J, (ap) - (I+ b2 Vo(qrVl (@)I (2.14) 

We will write the mixed boundary conditions (2.2) in terms of Laplace transforms 

~+(P)+~-(P)=c(P)P~,(p), q’(p)+wJ)= C(p)&(p), pE I!. 

o+(p) = 7 a,(z, l)e- pzdz, o-(p)= 7 f(t)eePzdz 
0 -m 

(2.15) 

y(P) = c12w + b2)2J&Jp)J,(6p)- 4abJo(bp)J,(up)]p+ 2u(l- 62)J,(up)J,(6p)] 

N,(p) = ww’ -apc2c;2(p4 +y)J,(up)J’(bp) 

The superscripts plus and minus denote that the functions are analytic in the right and left half-planes 
respectively. 

Since Nj(-p) = N,(P) and Nj(P) = ~j(P) (j = 1, 2), the zeros of these functions are arranged 
symmetrically about the coordinate axes of the complex plane, and their imaginary parts are bounded 
[12]. We will renumber the zeros of the functions N,(p) and Nz(p), lying in the right half-plane and 
having non-negative imaginary parts, in the order in which their real parts increase, and denote them 
by ok and bk (k = 1, 2, . ..). It is well known that the Bessel functions J,,(up) (n = 0, 1) have only real 
zeros, which satisfy the asymptotic formulaepk = rc(k + n/2 + 3/b)/a + 0(1/k). We will denote the positive 
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zeros of the product Ji(up) It(@), renumbered in the order in which they increase, by dk. The following 
formulae then hold for large values of k [12] 

Reak =x(k+k,,)l(a+b) (]k,]<2), Rebk =d,+O(k”) (2.16) 

Eliminating the function C(p) from Eqs (2.15) we obtain the Wiener-Hopf equation 

Q+(P)+T-tP)= K(PN~+(P)+~-(p)l, K(p)=N*(p)lN,(p), pE L 

We will find the solution of the homogeneous equation 

G(P) = K(P)o,+(P)* P E L 

We split Eq. (2.18) into two Riemann problems [13] 

t1ytP)’ Kjtp)oftp), p E L j = 192 

G(P) = aP)ot(P), rlO(P) = tl;(P)rl;(P) 

Noting that 

(2.17) 

(2.18) 

K(0) = Iill0 K(p) = &, &$)-Alb13, P++m 

6=a*(l-b*)+(l+b*)*-4,*, A=&- 
a*(l-b*)E,,h, A= 41-b*) 

2R*p P&c) 

(R(c) = 4ub - (1 + b2)2 is the Rayleigh function), we put K,(p) = Ap3ctg3xp. Factorization of the 
cotangent gives 

a;(p) = A+k3(f/2+ p)lT3(I + p) 

Hence it follows that 

o;(p) - A-%p-%, p --+ 00 

The function K2(p) = K(p)/K,(p) on the imaginary axis is real, and does not have zeros and poles; in 
addition 

K*(O) = An3(AD6)-‘, K2(ip) = 1 + O(e-**lal), l.3 + + 

Since the function K2(p) on the imaginary axis does not change its sign, its index is equal to zero. 
Consequently, the solution of the second Riemann problem has the form [13] 

o;(p)=exp -p j 
* In K2 (if) dt - 

It 0 t*+p* 
, Rep>0 

ol(iP> = Ki%($)exp 

It follows from Eqs (2.17) and (2.18) that 

lnK2W K2tiP) dt 
t* -P2 

Q-(P) q+(P) O’(P) ; o-(P), PE L -++=- 
G(P) G(P) 00’(P) 00’(p) 

(2.19) 

Special cases. 1. Suppose a thin shell is placed on a moving cylinder with a negative allowance 1. In 
conditions (2.2) and (2.3) we put 
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f(z)=g(z)=O, R=l+h/2-1, 4 =p2 =o 

We split this problem into the fundamental problem 

the solution of which can be found in an elementary manner 

-’ I u, = (J 

(E and v are the elasticity parameters of the cylinder), and the mixed problem 

T rz=o’ -=<zc+OO, r=l 

0, =-o’,, zco, f-=1; TJ(z)=O, z>o 

q=p*=o, z=o, r=l 

By conditions (2.21) 

C(p) =-a’, ; 
0’ e-Pzdz = I 

-ca 
p 7 rl’(p)=O 

From relations (2.19), on the basis of the asymptotic estimates 

a,+(p) = o(p-%), p$ = O(P), p+ O” 
0 

(2.20) 

(2.21) 

(2.22) 

obtained from an Abel-type theorem [14] taking into account the fact that the local energy of deformation 
of the cylinder is finite in the immediate vicinity of the edge of the shell, we obtain from the generalized 
Liouville theorem 

0’ x 
cs’(p)+cr(p)=~ 

o;(P) 
O;(P)@- + A-p+ B-), a,+(O) = (2.23) 

The constants& and B- are found from the equilibrium conditions of half the shell r = R, 0 s 8 s n., 
0 6 z C +a,. Suppose a moment PI, whose vector is directed along 0, and a shearing force P2, directed 
opposite to the radius r, acts on unit length of the end. Then 

Here 

a 
P2sinBdB=-j To,(z,l)sinedzdO+j ?j+(O)sin@&-2~N,(z)dz (2.24) 

0 0 0 0 

i I;sinBdB=j ~a,(z,l)zsinedZde+j ?“(O)sinBdB+2~N,(r)zdz 
0 0 0 0 0 

r1+Ko = 7 rlcz)dz, r1+*m = -7 lj(z)zdz, N,(z) 
0 0 

= Yu,(z, 1) 

The asterisk denotes differentiation with respect top, and Ns(z) is the circumferential force in the shell. 
Substituting 

o,(z,U = &[~+cP)+~-~P%+QP 
L 

(2.25) 

into relations (2.24), changing the order of integration and integrating with respect to 8 and z, in view 
of the homogeneous conditions of the mixed problem we arrive at two equations 
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where 

Closing the contour L from the right by semicircles of large radius, passing between the zeros of the 
function Art(p), by the theorem of residues we obtain 

A- = s,2 - s2s4 B = v4 - v3 

s;-s,s3 ’ - $-s,s3 

4 =mEp* s, = 5 -$+J- lim <cqp), s=2, 3, 4 
I m=~ a, (s - 2)! l-0 dp 

qk 9h)N3M, cc,+ 4 

%(a, ) 2p26 

O:*(O) = -a:(0 1 
We substitute expression (2.23) into the left-hand side of the first equation of (2.15) and obtain the 

function C(p). Then, by formulae (2.13), the integral 

(2.26) 

q=l, . . . . 5; u1 =u,, u2 = UZ’ u3 =(3,, u4 =r=’ us =oL 

is the solution of mixed problem (2.21) and, added to solution (2.20) forms the required functions 
u1 -(z, 
o F 

r). Here L- is the contour of integration, which coincides with the imaginary axis, with the exception 
the pointp = 0, which it circumvents from the right along a semicircle of small radius; the transforms 

U,(p, r) are given by formulae (2.14) with q = 1, 2, and the following expressions 

O3~~,r~=~~pI(l+b~)1,~bp~[(l+b~)~~o~apr~-2~~~a~~~~-‘]- 

- 4aJ, (QP)[ M)(@r) - J, w~-~]} 

U,(P,~)=2a(l+b2)~2P2[11(uPr)J,(bP)-J,(uP)J,(bpr)] 

2. Suppose now that a concentrated encircling load -P acts on the shell when z = I,, the edge of the 
shell is force-free, and there is no load. Under conditions (2.2) and (2.3) we put 

f(z) = 0, g(z) = 4%(,-f,), R=l+h/2, 8 =p,=O (2.27) 

where 6(z) is the Dirac delta function. 
We split this problem into the fundamental problem 

r5, = 0, q(z) = -PE’G(z-I,), --oo<z<+~, r=l 

the solution of which is found from formulae (2.13) with 
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qp)= Jl+tP)+Jl-tP) _ 
PN,(P) 

- - Dp;(p) +jqz - I&-%fp = - D;;;;;) 
and a correcting problem 

t, =o, -=<z<tm, r=l 

(3, = -Of!(z, l), z < 0, r = 1; q(z) =O, z > 0 (2.28) 

c-1 YU r - 

azn D ’ 
z=O, r=l, n=2,3 

where 

k=l 

are the radial stress, the moment (n = 2) and the shearing force (n = 3), defined by the fundamental 
problem. 

Substituting the Laplace transforms corresponding to conditions (2.28) into Eq. (2.19) by virtue of 
the asymptotic estimates (2.22) we have 

The constantsAk and Bk are calculated in the same way as the coefficientsA_ and B- in the problem 
of a shell with negative allowance. Substituting the last expression into the right-hand side of (2.25) 
we obtain from the equilibrium conditions 

-[A,S, +BkSl+j -sd+j(bk)]=O, j = 1, 2 

S4+j(bk)= 5 qm : ‘O~~o)+(j-l)S’~*(0) + ~o’(bk)N~(bk) 
m=l aA(bk -a,,,) bk’ bk ‘iNdbk) 

Hence 

A _ s2s6(bk)- s3s5(bk), 
k- 

s,2 - s,s, 

B 
k 

= S2&(bk) - s,&(bk) 

s; - s,s, 
(2.29) 

Returning to Eqs (2.15) and (2.18), we obtain 

1 -tAkptBk 
p - bk 

, Rep<0 

Substituting this expression into (2.13), we obtain, by superposition, the solution of problem (2.1) 
(2.27) 

$(z, r) = -!- J LT(PJ,) -UU,(p,r)epZdp, 
2Ri L- PN~(P) 

q = 1, . . . . 5 (2.30) 
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Fig. 1 

3. FORMULATION OF THE PROBLEM OF A FINITE SHELL 

Consider the problem of the motion, with constant sub-Rayleigh velocity c of a finite circular transversely 
isotropic cylinder 0 G rl G 1, -7t c 8, 6 n, --M c z1 c +m relative to a thin shell of finite length and 
negative allowance 1, which compresses it; in addition, a concentrated encircling load -P acts on the 
shell. In a fixed system of coordinates OOr&,zO, r. = rl, 13~ = El,, z. = z1 + ct, the boundary conditions 
of the problem when r = 1 have the form (the zero subscripts of the current coordinates are omitted) 

o,=o, zc-l,, z>l‘$; w = -yl- ;qz + 1, - l,), - 1, < z < 14 

3% _ 4-l an% _ Pn+l ----; z=-+; -__- 
aZn D azn D ’ 

z=14; n=2,3 

P3 is a moment whose vector is directed opposite to 8 and P4 is a shearing force which acts in a radial 
direction as shown in the figure. 

In a semi-infinite cylinder we will construct the solution in the system Or&, r = ro, 0 = eo, 
z = z,, + fs, in the form of the sum of inhomogeneous solutions L&(z, r), c&z, r), defined by formulae 
(2.20) (2.26) and (2.30) and a series in piecewise-homogeneous solutions, which satisfy the 
homogeneous conditions (2.1)-(2.3) with singularities at z = +M. When 0 d r. c 1,8 = eo, z. > 0 the 
solution will be sought in coordinates r = ro, 0 = Oo, z = z. - I4 in a similar form for the fundamental 
condition (2.1) and the mixed conditions 

P 
q(z)=-yL4(z+f*), z<o; (3, =o, z>o D (3.1) 

ax _ pn+, -_-- 
aZn D ’ 

z = 0, n=2,3 

with singularities in the piecewise-homogeneous solutions when z = --cQ. 
We will obtain the coefficients in the series in the piecewise-homogeneous solutions using orthogonality 

relations (1.6) from the condition of continuity of the solutions in the sectionzo = 0,O G r. G 1, assuming, 
to fix our ideas, that it is situated to the right of the encircling load: Ii < ls, l2 > 1,; 1, (s = 1, . . ., 4) are 
positive constants. 

4. SUBSYSTEMS OF PIECEWISE-HOMOGENEOUS SOLUTIONS 

We will construct two subsystems of piecewise-homogeneous solutions. According to the description 
given in Section 3, each element of the first subsystem must satisfy homogeneous conditions (2.1)-(2.3) 
and have a singularity at z = +m. These elements are represented in the form of the sum of the solution 
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of the fundamental problem (2.1) q(z) = 0 (- 00 < z < +-), which is found from formulae (2.14) when 
p = bk, and the solutions of the correcting mixed problem, determined by conditions (2.1) 

6, = -of(z, 1), z < 0, r = 1; q(z) = 0, z > 0 (4.1) 

fj =-Sk, P,=-P;, z=O, r=l (4.2) 

Here 

&, 1) = C,b,N,(b,)ebkZ, Sk = c,N,(b,)b,-I, p; = ckN&k) 

is the normal stress, the moment and the shearing force from the kth (k = 1,2, . . .) homogeneous solution 
of the fundamental problem, and C, are arbitrary constants. 

Conditions (4.1) lead to the Wiener-Hopf equation 

Repeating the procedure for solving Eq. (2.17) using conditions (4.2) on the end, we obtain 

C(P) = 
CkbkN,(6k)p2%(p) 

0,+(bk)pN2(p) 

Hence, as a result of correcting the solutions, the elements of the first subsystem of piecewise- 
homogeneous solutions take the form 

upk-(z,r)’ ckuq(bk,r)ebkz + 

uq(p,r)ePLdp, k = 1, 2, . . (4.3) 

The coefficients Ak and Bk are found from formulae (2.29). 
The second subsystem of piecewise-homogeneous solutions is constructed in the same way. Its 

elements u~+(z, r) (k = -1, -2, . . .) satisfy homogeneous boundary conditions (2.1) (3.1) and (3.2) and 
have a singularity at z = - 00. They are obtained by replacing the contour L- on the right-hand side of 
Eq. (4.3) by L, (L, circumvents the point p = 0 from the left), q;(p) by q:(p), CT;(&) by-o;(&), and 
Ak and Bk by -Ak and -Bk, where 

f&P) = qijt-ph 00(P) = a&-p), A-, =-A,, B-k = Bk 

5. SOLUTION OF THE PROBLEM OF A FINITE SHELL 

As in Section 3, the solution of the problem of a finite shell will be sought in the form 

u,_(z,r)=~~-(z,r)+Uy6-(2,r)+~u:(z,r)+ C i$(z,r). zc13 
k=l kdf 

z > -1, 

(5.1) 

w$ere ufi+(z, r) + ui+ 
I ) 
z, r 

uq+(z, r) differ from u 
is the solution of problem (2.1) (3.1) and (3.2). The functions ufi+(z, r) and 

-(z, r) and u:-(z, r) (see Section 2) by the replacement off(p, I) andg(p, 1,) and 
the contour L- byf(-p,j),g( -p, I?) and L, respectively, and Zf and 2” are sets of numbers of the complex 
zeros of the function N2(p), situated in the first and third quadrants of the complex plane, where the 
dash denotes complex conjugation. 

The constants C, are found from the eight conditions of continuity of the solution when z0 = 0 

uq-(I~,r)=uq+(-lr),r), O<r<l, q=l, 2,4,5 (5.2) 
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(5.3) 

by replacing two of the conditions (5.2) (q = 4,5) by linear combinations 

$s&? r> = P c2 a+ 
--+ c; ar i 1 

l-7 u‘$*(z,r) 
c2 

u7,(z, r) = h $[a;;+?; ( C2 
- + l-7 ) s*(z,r) 

Cl 

the transforms of which have the form 

c2 U,(P,r) + l c* 
&(p,r)=hT U;(p,r)+- 

Cl [ r I( 1 
-7 Wp,r) 

Cl 

We substitute expressions (5.1) into the new conditions (5.2) and expand the contour integrals in 
series in residues. Changing the order of summation in the double sums and noting that 

l/J-p,r) = W4JJq,(pIr) 

we obtain 

Elrl,(q.r)[X, +(-l)q-‘X-k +z(b,)]+ 
+,c:c Uq(Ek, r)[ Fk + (--lJq-’ Xk + Z(gk)] + QS-) = 0 

+ 

x,, = C*ke*b~‘r, Z(b,)=~~[(-I)qx~~(b.. -b,)-x,T,(-b”9 q+ 

+(-l)~s~(-b,, b,)-S+(b,, -b,)]+n~c[w’jT,T& -h)-u+(-b;l* 4)]+ 
+ 

(5.4) 

+(-l)qS(-hr &)-S+(b,, -&)]+Q,#,)+R,(b,) 

?4 
Q,(t) = (-Uq-’ P[ ,tcr, -13) _ p4 -12 1 1 , 

DtN; (t) 

R,(t) = 
+l,‘(t> 

00’ (O)tN; (0 
(t-’ + A-t - Bm)[(-1)q-1e-“3 + e-‘14] 

S*O,Q = 
Prl; (ON, (r’) 1 

DtN;(t)&‘T)N;(‘I) 
+ - + A,,t + &, 
- z-t 

e’t* -“* 

q=l,2,6,1; k-=1,, k+=-12, i-=13, 1+=--l, 

We multiply both sides of the first equation (q = 1) and the fourth equation (q = 7) of system (5.4) by 
U,(b,,, r) and -U,(b,, r) respectively, and the second equation (q = 2) and the third equation 
(q = 6) by -U,(b,,, r) and U,(b,,, r) respectively. We add these pairs of equations and integrate the equations 
obtained with respect to r from 0 to 1. Then, by virtue of the generalized orthogonality relation (1.6) 
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j[U,(b,,r)Us(b,,r)-U~(b,,r)U2(b,,r)]rdr+ 
0 

+AU,(b,,l)P”-MmU&n,l)=O, rn* frt2, R=l+h/2 

and taking conditions (5.3) into account we obtain the normal Poincare-Koch system with bilateral 
determinant 

+ DRL(l)b~U,(b,,,, 1) -i L(r)U6(b,, r)rdr x 

[ 0 I 

-I 

x 

i 

d[Ul(b~,r)U~(C.r)-U2(b~,r)U,(b~,r)]r~r-~Rb~ -l)b~Uf(b,,l) 

i 

h_(b,)=Q,(b,)-R,(b,); m=l, 2, . . 

Its matrix elements, according to expressions (2.16), decrease exponentially with the numbers of the 
rows and columns. 

The method described above can be extended in a natural way to the case of any finite number of 
shells of piecewise-constant stiffness, to the problem of two semi-infinite shells on a cylinder, and also 
to the problem for periodic systems of shells. 
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